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Abstract

In this short note, we show that, given access to n i.i.d. samples from a compactly supported d-
dimensional distribution P, the differential entropy of P convolved with an isotropic Gaussian can be
estimated at the rate O(n'/?) by a plug-in estimator. This answers a question of Goldfeld et al. (2018).

We consider the following problem: given i.i.d. samples from a distribution P on [~1,1]¢, how well can
one estimate the differential entropy of P convolved with an isotropic Gaussian? If we denote by N, the
distribution N'(0,0%1;) and by  the convolution operator, |Goldfeld et al.| (2018) recently showed that there
exists a simple estimator which converges to h(P * N,) at nearly the parametric rate. Indeed, writing
P, = %Z?:l dx,, where X; ~ P ii.d., they showed (Goldfeld et al. 2018, Theorem 2) that the plug-in

estimator h(P, * N,) achieves:

d
4
E[h(Py % Ny) — h(P % Ny)| < ca,d(lm\g/g). (1)
This rate is striking in that it is significantly better than what could be achieved by a generic estimator
using samples from PN, alone (see, e.g.,[Han et al.}[2017). In the interest of obtaining sharp rates, |Goldfeld
et al.| (2018) posed the question of whether the logarithmic term (logn)% could be improved to (logn)® for
some universal constant c.
In this note, we answer this question in the affirmative, showing in fact that the plug-in estimator
h(P, *x N) achieves exactly the parametric rate, without logarithmic factors.

Theorem 1. For any distribution P supported on [—1,1]¢, we have

EIR(E, * Ny) — h(P+ Ny)| < ca,d%7

L d2d+3
fOT Co,d = min{c2,04+2} "

The proof of Theorem |[If relies on the following proposition. Denote by Wi (P, Q) the 1-Wasserstein
distance between P and Q, i.e., W1(P,Q) := inf, [ ||z — y| dy(z,y), where the infimum is taken over all
couplings of P and Q.

Proposition 1. If P is supported on [—1,1]%, then

EWI(Pn *NO'7P*NO') < Clg’7d
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ro_ _Vd2dt?
fOT co‘,d ' min{l,0%}"
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To connect Proposition [I| to the question of entropy estimation, we employ the following result due to
Polyanskiy and Wu/ (2016]).

Proposition 2 (Polyanskiy and Wul 2016 Proposition 5). Let P and Q be distributions supported on [—1,1]¢,
with vp :=Exp||X||? and vg := Ex~q| X||*. Then

|M(Q * Ny) — h(P % Ny)| < (\vQ—vp|+2fW1(Q*Ng,P*N))

“\
.

When @ = P,,, Jensen’s inequality implies Elvp, — vp| < fvarx~p(||XH 2)1/2 < d/\/n. Hence, Theo-
rem [I] follows directly from Propositions [ and 2} It therefore suffices to give a proof of Proposition [I]

Proof of Proposition[], Denote by f the density of P * N, and by f, the density of P, * N,. We let
¢o(x) := (2m0?) "% 2 exp (— 525 || |?) be the density of N,,. We use the following upper bound (Villani, 2008,
Theorem 6.15):

Wi (P # Ny, P3N g/ 12l1fa(2) = F(2)]dz.
R4
This yields

BIA(P, o PN < [ ZIBI () = F(a)] s

- / 21 |-
R4

71 o\1/2 N
< ﬁ/ﬂ@d 2]l (E(¢o(z — X) —E¢y(z — X))?) " dz, X ~P
7 z 2= X)3)"% dz.
= \/ﬁ~/]Rd 2]l (E¢a( X) ) d

quc,zf —E¢,(z — X;)| dz

When z € [-2,2]¢, we use the bound (E¢y(z — )()2)1/2 < max,cpd 0o (2) = (270%)~ 2. For z ¢ [-2,2]¢,
we have ||z — X||? > ||z/2|? almost surely, which yields (E¢,(z — X)?) V2 < ¢ (2/2). We obtain

EWL(Po s Ny, P Ay < 270 lohlaz+ = [ el (a/2)a
n o) o) > Z||az — Z|| Qo2 z
! Vn z€[—2,2]¢ vV J.era

< ( (2702) d/2.4d.2+2d+1)- d/n
< max{1,0~ %242 /d/n.
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